Showing posts with label Areology. Show all posts
Showing posts with label Areology. Show all posts

January 16, 2009

Discovery of Significant Amounts of Methane on Mars

An interesting article out of NASA today. While I suspect that the methane plumes mentioned are probably of geologic origin, the idea that microorganisms (endoliths) may be living underneath the surface of Mars is not a new one. Certainly the possibility of a biologic origin to some or all of the Martian methane is quite plausible. Cross-posted at Areology.


Mars today is a world of cold and lonely deserts, apparently without life of any kind, at least on the surface. Indeed it looks like Mars has been cold and dry for billions of years, with an atmosphere so thin, any liquid water on the surface quickly boils away while the sun's ultraviolet radiation scorches the ground.

The situation sounds bleak, but research published today in Science Express reveals new hope for the Red Planet. The first definitive detection of methane in the atmosphere of Mars indicates that Mars is still alive, in either a biologic or geologic sense, according to a team of NASA and university scientists.

"Methane is quickly destroyed in the Martian atmosphere in a variety of ways, so our discovery of substantial plumes of methane in the northern hemisphere of Mars in 2003 indicates some ongoing process is releasing the gas," says lead author Michael Mumma of NASA's Goddard Space Flight Center. "At northern mid-summer, methane is released at a rate comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California."

Methane -- four atoms of hydrogen bound to a carbon atom -- is the main component of natural gas on Earth. It is of interest to astrobiologists because much of Earth's methane come from living organisms digesting their nutrients. However, life is not required to produce the gas. Other purely geological processes, like oxidation of iron, also release methane. "Right now, we don't have enough information to tell if biology or geology -- or both -- is producing the methane on Mars," said Mumma. "But it does tell us that the planet is still alive, at least in a geologic sense. It's as if Mars is challenging us, saying, hey, find out what this means."

If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist. Liquid water, as well as energy sources and a supply of carbon, are necessary for all known forms of life.

"On Earth, microorganisms thrive 2 to 3 kilometers (about 1.2 to 1.9 miles) beneath the Witwatersrand basin of South Africa, where natural radioactivity splits water molecules into molecular hydrogen (H2) and oxygen (O). The organisms use the hydrogen for energy. It might be possible for similar organisms to survive for billions of years below the permafrost layer on Mars, where water is liquid, radiation supplies energy, and carbon dioxide provides carbon," says Mumma.

"Gases, like methane, accumulated in such underground zones might be released into the atmosphere if pores or fissures open during the warm seasons, connecting the deep zones to the atmosphere at crater walls or canyons," he says.

"Microbes that produced methane from hydrogen and carbon dioxide were one of the earliest forms of life on Earth," notes Carl Pilcher, Director of the NASA Astrobiology Institute which partially supported the research. "If life ever existed on Mars, it's reasonable to think that its metabolism might have involved making methane from Martian atmospheric carbon dioxide."

However, it is possible a geologic process produced the Martian methane, either now or eons ago. On Earth, the conversion of iron oxide (rust) into the serpentine group of minerals creates methane, and on Mars this process could proceed using water, carbon dioxide, and the planet's internal heat. Another possibility is vulcanism: Although there is no evidence of currently active Martian volcanoes, ancient methane trapped in ice "cages" called clathrates might now be released.

The team found methane in the atmosphere of Mars by carefully observing the planet over several Mars years (and all Martian seasons) using spectrometers attached to telescopes at NASA's Infrared Telescope Facility, run by the University of Hawaii, and the W. M. Keck telescope, both at Mauna Kea, Hawaii.

"We observed and mapped multiple plumes of methane on Mars, one of which released about 19,000 metric tons of methane," says Geronimo Villanueva of the Catholic University of America in Washington, D.C. Villanueva is stationed at NASA Goddard and is co-author of the paper. "The plumes were emitted during the warmer seasons -- spring and summer -- perhaps because the permafrost blocking cracks and fissures vaporized, allowing methane to seep into the Martian air. Curiously, some plumes had water vapor while others did not," he says.

According to the team, the plumes were seen over areas that show evidence of ancient ground ice or flowing water. For example, plumes appeared over northern hemisphere regions such as east of Arabia Terra, the Nili Fossae region, and the south-east quadrant of Syrtis Major, an ancient volcano 1,200 kilometers (about 745 miles) across.

It will take future missions, like NASA's Mars Science Laboratory, to discover the origin of the Martian methane. One way to tell if life is the source of the gas is by measuring isotope ratios. Isotopes are heavier versions of an element; for example, deuterium is a heavier version of hydrogen. In molecules that contain hydrogen, like water and methane, the rare deuterium occasionally replaces a hydrogen atom. Since life prefers to use the lighter isotopes, if the methane has less deuterium than the water released with it on Mars, it's a sign that life is producing the methane.

Whatever future research reveals--biology or geology--one thing is already clear: Mars is not so dead, after all.

Photo Credits: Trent Schindler/NASA (first picture); NASA (second picture) For more pictures and animations, please click here

May 26, 2008

Mars Phoenix Lander Lands on Mars


Photos credit: NASA/JPL-Calech/University of Arizona

I'm happy to say that the Mars Phoenix Lander has landed safely on Mars. The spacecraft was launched from Cape Canaveral last August, and successfully set down in the part of Mars known as the Vastitas Borealis (literally, northern vastness or widespread lowlands). The Vastitas Borealis lies 3-4 km below the mean radius of the planet (the Martian equivalent of sea level), that completely encircles the northern hemisphere of Mars from about 50°-60° North to about 80° North, where it meets the Planum Boreum, the northern polar plain where the ice cap is located. It is believed that the Vastitas Borealis may have been an ocean in Mars' ancient past, and that the Phoenix Lander may discover ice beneath a thin layer of dirt.

Unlike the rovers
Spirit and Opportunity, which are both mobile and have been operational for a number of years, the Phoenix Lander will remain in one place, where it landed, and is expected to survive for about three months or so, when the weather will freeze the spacecraft. In the meantime, the Phoenix Lander has an arm that will scoop soil and ice samples and place them into several chemistry laboratories inside the spacecraft, which will try to determine the soil chemistry, the amount of water and water vapor in the soil, and the soil's level of conductivity. The goal is to determine whether the Martian environment has ever been favorable to microbial life. In addition to the above-mentioned equipment, there's also several cameras on board plus a meteorological station, all of which are standard equipment for Martian vehicles today.

The two photos here are some of the first images taken by the
Phoenix Lander. Both photos, which are approximate-color images, show a landscape that is strewn with tiny pebbles and shows polygonal cracking, a pattern seen widely in Martian high latitudes and also observed in permafrost terrains on Earth. The polygonal cracking is believed to have resulted from seasonal freezing and thawing of surface ice.

For more information on the Mars Phoenix Lander, check out another of my blogs, Areology.

July 28, 2007

Areology

Western Hemisphere of MarsYes, I'm a glutton for punishment. I had been thinking of starting a new blog, something along the lines of two astronomy-oriented photoblogs that I enjoy reading, Astronomy Picture of the Day and LPOD - Lunar Photo of the Day. Areology, which means "the study of Mars," is a topic I've become increasingly fond of, and I thought I'd try my hand at creating a blog along the lines of the above two, except focusing on Mars (of course). So please come visit me at Areology, where we can learn a few things about Mars together.

The above photo of the western hemisphere of Mars (click to enlarge) is a compilation mosaic of over 100 photos taken by the two Viking Orbiters in the 1970s.